3.7.5 \(\int \frac {(a+b x)^{3/2}}{x^2 \sqrt {c+d x}} \, dx\)

Optimal. Leaf size=121 \[ \frac {2 b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {d}}-\frac {\sqrt {a} (3 b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{c^{3/2}}-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {98, 157, 63, 217, 206, 93, 208} \begin {gather*} \frac {2 b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {d}}-\frac {\sqrt {a} (3 b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{c^{3/2}}-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(3/2)/(x^2*Sqrt[c + d*x]),x]

[Out]

-((a*Sqrt[a + b*x]*Sqrt[c + d*x])/(c*x)) - (Sqrt[a]*(3*b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqr
t[c + d*x])])/c^(3/2) + (2*b^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/Sqrt[d]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(a+b x)^{3/2}}{x^2 \sqrt {c+d x}} \, dx &=-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x}-\frac {\int \frac {-\frac {1}{2} a (3 b c-a d)-b^2 c x}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{c}\\ &=-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x}+b^2 \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx+\frac {(a (3 b c-a d)) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{2 c}\\ &=-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x}+(2 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )+\frac {(a (3 b c-a d)) \operatorname {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{c}\\ &=-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x}-\frac {\sqrt {a} (3 b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{c^{3/2}}+(2 b) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )\\ &=-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x}-\frac {\sqrt {a} (3 b c-a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{c^{3/2}}+\frac {2 b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.89, size = 154, normalized size = 1.27 \begin {gather*} \frac {\sqrt {a} (a d-3 b c) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{c^{3/2}}-\frac {a \sqrt {a+b x} \sqrt {c+d x}}{c x}+\frac {2 (b c-a d)^{3/2} \left (\frac {b (c+d x)}{b c-a d}\right )^{3/2} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b c-a d}}\right )}{\sqrt {d} (c+d x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(3/2)/(x^2*Sqrt[c + d*x]),x]

[Out]

-((a*Sqrt[a + b*x]*Sqrt[c + d*x])/(c*x)) + (2*(b*c - a*d)^(3/2)*((b*(c + d*x))/(b*c - a*d))^(3/2)*ArcSinh[(Sqr
t[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/(Sqrt[d]*(c + d*x)^(3/2)) + (Sqrt[a]*(-3*b*c + a*d)*ArcTanh[(Sqrt[c]*Sqr
t[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/c^(3/2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.31, size = 146, normalized size = 1.21 \begin {gather*} \frac {\left (a^{3/2} d-3 \sqrt {a} b c\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x}}{\sqrt {c} \sqrt {a+b x}}\right )}{c^{3/2}}+\frac {2 b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{\sqrt {d}}+\frac {a \sqrt {c+d x} (a d-b c)}{c \sqrt {a+b x} \left (c-\frac {a (c+d x)}{a+b x}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + b*x)^(3/2)/(x^2*Sqrt[c + d*x]),x]

[Out]

(a*(-(b*c) + a*d)*Sqrt[c + d*x])/(c*Sqrt[a + b*x]*(c - (a*(c + d*x))/(a + b*x))) + ((-3*Sqrt[a]*b*c + a^(3/2)*
d)*ArcTanh[(Sqrt[a]*Sqrt[c + d*x])/(Sqrt[c]*Sqrt[a + b*x])])/c^(3/2) + (2*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*
x])/(Sqrt[d]*Sqrt[a + b*x])])/Sqrt[d]

________________________________________________________________________________________

fricas [B]  time = 3.10, size = 862, normalized size = 7.12 \begin {gather*} \left [\frac {2 \, b c x \sqrt {\frac {b}{d}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d^{2} x + b c d + a d^{2}\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {b}{d}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) - {\left (3 \, b c - a d\right )} x \sqrt {\frac {a}{c}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} + 4 \, {\left (2 \, a c^{2} + {\left (b c^{2} + a c d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {a}{c}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, \sqrt {b x + a} \sqrt {d x + c} a}{4 \, c x}, -\frac {4 \, b c x \sqrt {-\frac {b}{d}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {b}{d}}}{2 \, {\left (b^{2} d x^{2} + a b c + {\left (b^{2} c + a b d\right )} x\right )}}\right ) + {\left (3 \, b c - a d\right )} x \sqrt {\frac {a}{c}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} + 4 \, {\left (2 \, a c^{2} + {\left (b c^{2} + a c d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {a}{c}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, \sqrt {b x + a} \sqrt {d x + c} a}{4 \, c x}, \frac {b c x \sqrt {\frac {b}{d}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d^{2} x + b c d + a d^{2}\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {b}{d}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + {\left (3 \, b c - a d\right )} x \sqrt {-\frac {a}{c}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {a}{c}}}{2 \, {\left (a b d x^{2} + a^{2} c + {\left (a b c + a^{2} d\right )} x\right )}}\right ) - 2 \, \sqrt {b x + a} \sqrt {d x + c} a}{2 \, c x}, -\frac {2 \, b c x \sqrt {-\frac {b}{d}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {b}{d}}}{2 \, {\left (b^{2} d x^{2} + a b c + {\left (b^{2} c + a b d\right )} x\right )}}\right ) - {\left (3 \, b c - a d\right )} x \sqrt {-\frac {a}{c}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {a}{c}}}{2 \, {\left (a b d x^{2} + a^{2} c + {\left (a b c + a^{2} d\right )} x\right )}}\right ) + 2 \, \sqrt {b x + a} \sqrt {d x + c} a}{2 \, c x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^2/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*b*c*x*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c*d + a*d^2)*sqrt
(b*x + a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) - (3*b*c - a*d)*x*sqrt(a/c)*log((8*a^2*c^2 + (b^2
*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 + 4*(2*a*c^2 + (b*c^2 + a*c*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(a/c) + 8*(a
*b*c^2 + a^2*c*d)*x)/x^2) - 4*sqrt(b*x + a)*sqrt(d*x + c)*a)/(c*x), -1/4*(4*b*c*x*sqrt(-b/d)*arctan(1/2*(2*b*d
*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + (3*b*c - a*d
)*x*sqrt(a/c)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 + 4*(2*a*c^2 + (b*c^2 + a*c*d)*x)*sqrt(b*x
+ a)*sqrt(d*x + c)*sqrt(a/c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*sqrt(b*x + a)*sqrt(d*x + c)*a)/(c*x), 1/2*(b*
c*x*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c*d + a*d^2)*sqrt(b*x + a)*
sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) + (3*b*c - a*d)*x*sqrt(-a/c)*arctan(1/2*(2*a*c + (b*c + a*d
)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-a/c)/(a*b*d*x^2 + a^2*c + (a*b*c + a^2*d)*x)) - 2*sqrt(b*x + a)*sqrt(d*
x + c)*a)/(c*x), -1/2*(2*b*c*x*sqrt(-b/d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-b
/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) - (3*b*c - a*d)*x*sqrt(-a/c)*arctan(1/2*(2*a*c + (b*c + a*d)*x)*s
qrt(b*x + a)*sqrt(d*x + c)*sqrt(-a/c)/(a*b*d*x^2 + a^2*c + (a*b*c + a^2*d)*x)) + 2*sqrt(b*x + a)*sqrt(d*x + c)
*a)/(c*x)]

________________________________________________________________________________________

giac [B]  time = 2.24, size = 470, normalized size = 3.88 \begin {gather*} -\frac {{\left (\frac {\sqrt {b d} b \log \left ({\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{d} + \frac {{\left (3 \, \sqrt {b d} a b^{2} c - \sqrt {b d} a^{2} b d\right )} \arctan \left (-\frac {b^{2} c + a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt {-a b c d} b}\right )}{\sqrt {-a b c d} b c} + \frac {2 \, {\left (\sqrt {b d} a b^{4} c^{2} - 2 \, \sqrt {b d} a^{2} b^{3} c d + \sqrt {b d} a^{3} b^{2} d^{2} - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b^{2} c - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{2} b d\right )}}{{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b d + {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4}\right )} c}\right )} b}{{\left | b \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^2/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-(sqrt(b*d)*b*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/d + (3*sqrt(b*d)*a*b^2*c
- sqrt(b*d)*a^2*b*d)*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*
d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b*c) + 2*(sqrt(b*d)*a*b^4*c^2 - 2*sqrt(b*d)*a^2*b^3*c*d + sqrt(b*d)
*a^3*b^2*d^2 - sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b^2*c - sqrt(b*d)
*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^2*b*d)/((b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*
d^2 - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) -
 sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b*d + (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d)
)^4)*c))*b/abs(b)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 223, normalized size = 1.84 \begin {gather*} \frac {\sqrt {b x +a}\, \sqrt {d x +c}\, \left (\sqrt {b d}\, a^{2} d x \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}}{x}\right )-3 \sqrt {b d}\, a b c x \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}}{x}\right )+2 \sqrt {a c}\, b^{2} c x \ln \left (\frac {2 b d x +a d +b c +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}}{2 \sqrt {b d}}\right )-2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\, a \right )}{2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\, \sqrt {a c}\, c x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(3/2)/x^2/(d*x+c)^(1/2),x)

[Out]

1/2*(b*x+a)^(1/2)*(d*x+c)^(1/2)/c*(2*ln(1/2*(2*b*d*x+a*d+b*c+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))/(b*d)^(1/2
))*x*b^2*c*(a*c)^(1/2)+ln((a*d*x+b*c*x+2*a*c+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2))/x)*x*a^2*d*(b*d)^(1/2)-3*l
n((a*d*x+b*c*x+2*a*c+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2))/x)*x*a*b*c*(b*d)^(1/2)-2*a*(a*c)^(1/2)*((b*x+a)*(d
*x+c))^(1/2)*(b*d)^(1/2))/((b*x+a)*(d*x+c))^(1/2)/x/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^2/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,x\right )}^{3/2}}{x^2\,\sqrt {c+d\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(3/2)/(x^2*(c + d*x)^(1/2)),x)

[Out]

int((a + b*x)^(3/2)/(x^2*(c + d*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x\right )^{\frac {3}{2}}}{x^{2} \sqrt {c + d x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(3/2)/x**2/(d*x+c)**(1/2),x)

[Out]

Integral((a + b*x)**(3/2)/(x**2*sqrt(c + d*x)), x)

________________________________________________________________________________________